Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am Nat ; 202(6): 737-752, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38033186

RESUMEN

AbstractDeleterious genetic variation is abundant in wild populations, and understanding the ecological and conservation implications of such variation is an area of active research. Genomic methods are increasingly used to quantify the impacts of deleterious variation in natural populations; however, these approaches remain limited by an inability to accurately predict the selective and dominance effects of mutations. Computational simulations of deleterious variation offer a complementary tool that can help overcome these limitations, although such approaches have yet to be widely employed. In this perspective article, we aim to encourage ecological and conservation genomics researchers to adopt greater use of computational simulations to aid in deepening our understanding of deleterious variation in natural populations. We first provide an overview of the components of a simulation of deleterious variation, describing the key parameters involved in such models. Next, we discuss several approaches for validating simulation models. Finally, we compare and validate several recently proposed deleterious mutation models, demonstrating that models based on estimates of selection parameters from experimental systems are biased toward highly deleterious mutations. We describe a new model that is supported by multiple orthogonal lines of evidence and provide example scripts for implementing this model (https://github.com/ckyriazis/simulations_review).


Asunto(s)
Carga Genética , Genética de Población , Variación Genética , Endogamia , Modelos Genéticos , Mutación , Selección Genética
2.
Nat Commun ; 14(1): 5465, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37699896

RESUMEN

Twentieth century industrial whaling pushed several species to the brink of extinction, with fin whales being the most impacted. However, a small, resident population in the Gulf of California was not targeted by whaling. Here, we analyzed 50 whole-genomes from the Eastern North Pacific (ENP) and Gulf of California (GOC) fin whale populations to investigate their demographic history and the genomic effects of natural and human-induced bottlenecks. We show that the two populations diverged ~16,000 years ago, after which the ENP population expanded and then suffered a 99% reduction in effective size during the whaling period. In contrast, the GOC population remained small and isolated, receiving less than one migrant per generation. However, this low level of migration has been crucial for maintaining its viability. Our study exposes the severity of whaling, emphasizes the importance of migration, and demonstrates the use of genome-based analyses and simulations to inform conservation strategies.


Asunto(s)
Ballena de Aleta , Humanos , Animales , Genómica , Industrias
3.
Nat Ecol Evol ; 7(5): 647-648, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36941342
5.
Science ; 377(6606): 635-641, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35926022

RESUMEN

Genetic admixture is central to primate evolution. We combined 50 years of field observations of immigration and group demography with genomic data from ~9 generations of hybrid baboons to investigate the consequences of admixture in the wild. Despite no obvious fitness costs to hybrids, we found signatures of selection against admixture similar to those described for archaic hominins. These patterns were concentrated near genes where ancestry is strongly associated with gene expression. Our analyses also show that introgression is partially predictable across the genome. This study demonstrates the value of integrating genomic and field data for revealing how "genomic signatures of selection" (e.g., reduced introgression in low-recombination regions) manifest in nature; moreover, it underscores the importance of other primates as living models for human evolution.


Asunto(s)
Hibridación Genética , Papio , Selección Genética , Animales , Genoma , Papio/genética
6.
Science ; 376(6593): 635-639, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35511971

RESUMEN

In cases of severe wildlife population decline, a key question is whether recovery efforts will be impeded by genetic factors, such as inbreeding depression. Decades of excess mortality from gillnet fishing have driven Mexico's vaquita porpoise (Phocoena sinus) to ~10 remaining individuals. We analyzed whole-genome sequences from 20 vaquitas and integrated genomic and demographic information into stochastic, individual-based simulations to quantify the species' recovery potential. Our analysis suggests that the vaquita's historical rarity has resulted in a low burden of segregating deleterious variation, reducing the risk of inbreeding depression. Similarly, genome-informed simulations suggest that the vaquita can recover if bycatch mortality is immediately halted. This study provides hope for vaquitas and other naturally rare endangered species and highlights the utility of genomics in predicting extinction risk.


Asunto(s)
Depresión Endogámica , Phocoena , Animales , Conservación de los Recursos Naturales , Especies en Peligro de Extinción , Variación Genética , Genoma , Endogamia , Phocoena/genética
7.
Curr Biol ; 32(8): R358-R359, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35472421

RESUMEN

Robinson and colleagues respond to the points raised about their paper by Bakker et al.

8.
Genome Biol Evol ; 14(4)2022 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-35325119

RESUMEN

Homologous recombination has been extensively studied in humans and a handful of model organisms. Much less is known about recombination in other species, including nonhuman primates. Here, we present a study of crossovers (COs) and noncrossover (NCO) recombination in olive baboons (Papio anubis) from two pedigrees containing a total of 20 paternal and 17 maternal meioses, and compare these results to linkage disequilibrium (LD) based recombination estimates from 36 unrelated olive baboons. We demonstrate how COs, combined with LD-based recombination estimates, can be used to identify genome assembly errors. We also quantify sex-specific differences in recombination rates, including elevated male CO and reduced female CO rates near telomeres. Finally, we add to the increasing body of evidence suggesting that while most NCO recombination tracts in mammals are short (e.g., <500 bp), there is a non-negligible fraction of longer (e.g., >1 kb) NCO tracts. For NCO tracts shorter than 10 kb, we fit a mixture of two (truncated) geometric distributions model to the NCO tract length distribution and estimate that >99% of all NCO tracts are very short (mean 24 bp), but the remaining tracts can be quite long (mean 4.3 kb). A single geometric distribution model for NCO tract lengths is incompatible with the data, suggesting that LD-based methods for estimating NCO recombination rates that make this assumption may need to be modified.


Asunto(s)
Intercambio Genético , Meiosis , Animales , Femenino , Masculino , Mamíferos/genética , Papio/genética , Linaje
9.
Curr Biol ; 31(13): 2939-2946.e5, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-33989525

RESUMEN

Due to their small population sizes, threatened and endangered species frequently suffer from a lack of genetic diversity, potentially leading to inbreeding depression and reduced adaptability.1 During the latter half of the twentieth century, North America's largest soaring bird,2 the California condor (Gymnogyps californianus; Critically Endangered3), briefly went extinct in the wild. Though condors once ranged throughout North America, by 1982 only 22 individuals remained. Following decades of captive breeding and release efforts, there are now >300 free-flying wild condors and ∼200 in captivity. The condor's recent near-extinction from lead poisoning, poaching, and loss of habitat is well documented,4 but much about its history remains obscure. To fill this gap and aid future management of the species, we produced a high-quality chromosome-length genome assembly for the California condor and analyzed its genome-wide diversity. For comparison, we also examined the genomes of two close relatives: the Andean condor (Vultur gryphus; Vulnerable3) and the turkey vulture (Cathartes aura; Least Concern3). The genomes of all three species show evidence of historic population declines. Interestingly, the California condor genome retains a high degree of variation, which our analyses reveal is a legacy of its historically high abundance. Correlations between genome-wide diversity and recombination rate further suggest a history of purifying selection against linked deleterious alleles, boding well for future restoration. We show how both long-term evolutionary forces and recent inbreeding have shaped the genome of the California condor, and provide crucial genomic resources to enable future research and conservation.


Asunto(s)
Especies en Peligro de Extinción , Falconiformes/clasificación , Falconiformes/genética , Genoma/genética , Animales , Ecosistema , Femenino , Genómica , Densidad de Población
10.
Sci Adv ; 5(5): eaau0757, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31149628

RESUMEN

The observation that small isolated populations often suffer reduced fitness from inbreeding depression has guided conservation theory and practice for decades. However, investigating the genome-wide dynamics associated with inbreeding depression in natural populations is only now feasible with relatively inexpensive sequencing technology and annotated reference genomes. To characterize the genome-wide effects of intense inbreeding and isolation, we performed whole-genome sequencing and morphological analysis of an iconic inbred population, the gray wolves (Canis lupus) of Isle Royale. Through population genetic simulations and comparison with wolf genomes from a variety of demographic histories, we find evidence that severe inbreeding depression in this population is due to increased homozygosity of strongly deleterious recessive mutations. Our results have particular relevance in light of the recent translocation of wolves from the mainland to Isle Royale, as well as broader implications for management of genetic variation in the fragmented landscape of the modern world.


Asunto(s)
Variación Genética , Genoma , Endogamia , Lobos/genética , Anomalías Múltiples/genética , Anomalías Múltiples/veterinaria , Animales , Extinción Biológica , Femenino , Genética de Población , Homocigoto , Masculino , Michigan , Secuenciación Completa del Genoma
11.
Genome Res ; 29(5): 848-856, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30926611

RESUMEN

Baboons (genus Papio) are broadly studied in the wild and in captivity. They are widely used as a nonhuman primate model for biomedical studies, and the Southwest National Primate Research Center (SNPRC) at Texas Biomedical Research Institute has maintained a large captive baboon colony for more than 50 yr. Unlike other model organisms, however, the genomic resources for baboons are severely lacking. This has hindered the progress of studies using baboons as a model for basic biology or human disease. Here, we describe a data set of 100 high-coverage whole-genome sequences obtained from the mixed colony of olive (P. anubis) and yellow (P. cynocephalus) baboons housed at the SNPRC. These data provide a comprehensive catalog of common genetic variation in baboons, as well as a fine-scale genetic map. We show how the data can be used to learn about ancestry and admixture and to correct errors in the colony records. Finally, we investigated the consequences of inbreeding within the SNPRC colony and found clear evidence for increased rates of infant mortality and increased homozygosity of putatively deleterious alleles in inbred individuals.


Asunto(s)
Papio anubis/genética , Papio cynocephalus/genética , Alelos , Animales , Femenino , Variación Genética , Genotipo , Endogamia , Masculino , Recombinación Genética , Secuenciación Completa del Genoma
12.
Curr Biol ; 28(21): 3487-3494.e4, 2018 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-30415705

RESUMEN

The recovery and persistence of rare and endangered species are often threatened by genetic factors, such as the accumulation of deleterious mutations, loss of adaptive potential, and inbreeding depression [1]. Island foxes (Urocyon littoralis), the dwarfed descendants of mainland gray foxes (Urocyon cinereoargenteus), have inhabited California's Channel Islands for >9,000 years [2-4]. Previous genomic analyses revealed that island foxes have exceptionally low levels of diversity and elevated levels of putatively deleterious variation [5]. Nonetheless, all six populations have persisted for thousands of generations, and several populations rebounded rapidly after recent severe bottlenecks [6, 7]. Here, we combine morphological and genomic data with population-genetic simulations to determine the mechanism underlying the enigmatic persistence of these foxes. First, through analysis of genomes from 1929 to 2009, we show that island foxes have remained at small population sizes with low diversity for many generations. Second, we present morphological data indicating an absence of inbreeding depression in island foxes, confirming that they are not afflicted with congenital defects common to other small and inbred populations. Lastly, our population-genetic simulations suggest that long-term small population size results in a reduced burden of strongly deleterious recessive alleles, providing a mechanism for the absence of inbreeding depression in island foxes. Importantly, the island fox illustrates a scenario in which genetic restoration through human-assisted gene flow could be a counterproductive or even harmful conservation strategy. Our study sheds light on the puzzle of island fox persistence, a unique success story that provides a model for the preservation of small populations.


Asunto(s)
Zorros/genética , Variación Genética , Depresión Endogámica , Animales , California , Especies en Peligro de Extinción , Islas , Densidad de Población
13.
Curr Biol ; 26(9): 1183-9, 2016 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-27112291

RESUMEN

Genetic studies of rare and endangered species often focus on defining and preserving genetically distinct populations, especially those having unique adaptations [1, 2]. Much less attention is directed at understanding the landscape of deleterious variation, an insidious consequence of geographic isolation and the inefficiency of natural selection to eliminate harmful variants in small populations [3-5]. With population sizes of many vertebrates decreasing and isolation increasing through habitat fragmentation and loss, understanding the extent and nature of deleterious variation in small populations is essential for predicting and enhancing population persistence. The Channel Island fox (Urocyon littoralis) is a dwarfed species that inhabits six of California's Channel Islands and is derived from the mainland gray fox (U. cinereoargenteus). These isolated island populations have persisted for thousands of years at extremely small population sizes [6, 7] and, consequently, are a model for testing ideas about the accumulation of deleterious variation in small populations under natural conditions. Analysis of complete genome sequence data from island foxes shows a dramatic decrease in genome-wide variation and a sharp increase in the homozygosity of deleterious variants. The San Nicolas Island population has a near absence of variation, demonstrating a unique genetic flatlining that is punctuated by heterozygosity hotspots, enriched for olfactory receptor genes and other genes with high levels of ancestral variation. These findings question the generality of the small-population paradigm that maintains substantial genetic variation is necessary for short- and long-term persistence.


Asunto(s)
Especies en Peligro de Extinción , Zorros/genética , Variación Genética/fisiología , Genómica , Animales , California , Demografía , Genotipo , Islas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...